1. (20%) Determine whether the series converges absolutely or conditionally, or diverges. In addition, please indicate the test you use.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(2 n-1)}{3 n+4}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n^{3}+1}+\sqrt{n^{3}}}$
(c) $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n+1}$
(d) $\sum_{n=3}^{\infty} \frac{(-1)^{n}}{n(\ln n)[\ln (\ln n)]^{2}}$
(e) $\sum_{n=1}^{\infty}(\sqrt[n]{n}-1)$

Theorem 9.1 (Limit of a sequence)

Let L be a real number. Let f be a function of a real variable such that

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

If $\left\{a_{n}\right\}$ is a sequence such that $f(n)=a_{n}$ for every positive integer n, then

$$
\lim _{n \rightarrow \infty} a_{n}=L .
$$

Definition 9.4 (Convergent and divergent series)

For the infinite series $\sum_{n=1}^{\infty} a_{n}$ the nth partial sum is given by

$$
S_{n}=a_{1}+a_{2}+\cdots+a_{n} .
$$

If the sequence of partial sums $\left\{S_{n}\right\}$ converges to S, then the series $\sum_{n=1}^{\infty} a_{n}$ converges. The limit S is called the sum of the series.

$$
S=a_{1}+a_{2}+\cdots+a_{n}+\cdots \quad S=\sum_{n=1}^{\infty} a_{n}
$$

If $\left\{S_{n}\right\}$ diverges, then the series diverges.

Definition 9.5 (Absolute and conditional convergence)

(1) $\sum a_{n}$ is absolutely convergent if $\sum\left|a_{n}\right|$ converges.
(2) $\sum a_{n}$ is conditionally convergent if $\sum a_{n}$ converges but $\sum\left|a_{n}\right|$ diverges.

SUMMARY OF TESTS FOR SERIES

Test	Series	Condition(s) of Convergence	Condition(s) of Divergence	Comment
n th-Term	$\sum_{n=1}^{\infty} a_{n}$		$\lim _{n \rightarrow \infty} a_{n} \neq 0$	This test cannot be used to show convergence.
Geometric Series $(r \neq 0)$	$\sum_{n=0}^{\infty} a r^{n}$	$\|r\|<1$	$\|r\| \geq 1$	Sum: $S=\frac{a}{1-r}$
Telescoping Series	$\sum_{n=1}^{\infty}\left(b_{n}-b_{n+1}\right)$	$\lim _{n \rightarrow \infty} b_{n}=L$		Sum: $S=b_{1}-L$
p-Series	$\sum_{n=1}^{\infty} \frac{1}{n^{p}}$	$p>1$	$0<p \leq 1$	
Alternating Series $\left(a_{n}>0\right)$	$\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$	$\begin{aligned} & a_{n+1} \leq a_{n} \text { and } \\ & \lim _{n \rightarrow \infty} a_{n}=0 \end{aligned}$		Remainder: $\left\|R_{N}\right\| \leq a_{N+1}$
Integral (f is continuous, positive, and decreasing)	$\begin{aligned} & \sum_{n=1}^{\infty} a_{n}, \\ & a_{n}=f(n) \geq 0 \end{aligned}$	$\int_{1}^{\infty} f(x) d x \text { converges }$	$\int_{1}^{\infty} f(x) d x \text { diverges }$	Remainder: $0<R_{N}<\int_{N}^{\infty} f(x) d x$
Root	$\sum_{n=1}^{\infty} a_{n}$	$\lim _{n \rightarrow \infty} \sqrt[n]{\left\|a_{n}\right\|}<1$	$\begin{aligned} & \lim _{n \rightarrow \infty} \sqrt[n]{\left\|a_{n}\right\|}>1 \text { or } \\ & =\infty \end{aligned}$	Test is inconclusive when $\lim _{n \rightarrow \infty} \sqrt[n]{\left\|a_{n}\right\|}=1$
Ratio	$\sum_{n=1}^{\infty} a_{n}$	$\lim _{n \rightarrow \infty}\left\|\frac{a_{n+1}}{a_{n}}\right\|<1$	$\begin{aligned} & \lim _{n \rightarrow \infty}\left\|\frac{a_{n+1}}{a_{n}}\right\|>1 \text { or } \\ & =\infty \end{aligned}$	Test is inconclusive when $\lim _{n \rightarrow \infty}\left\|\frac{a_{n+1}}{a_{n}}\right\|=1 .$
Direct Comparison $\left(a_{n}, b_{n}>0\right)$	$\sum_{n=1}^{\infty} a_{n}$	$\begin{aligned} & 0<a_{n} \leq b_{n} \\ & \text { and } \sum_{n=1}^{\infty} b_{n} \text { converges } \end{aligned}$	$\begin{aligned} & 0<b_{n} \leq a_{n} \\ & \text { and } \sum_{n=1}^{\infty} b_{n} \text { diverges } \end{aligned}$	
Limit Comparison $\left(a_{n}, b_{n}>0\right)$	$\sum_{n=1}^{\infty} a_{n}$	$\begin{aligned} & \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L>0 \\ & \text { and } \sum_{n=1}^{\infty} b_{n} \text { converges } \end{aligned}$	$\begin{aligned} & \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L>0 \\ & \text { and } \sum_{n=1}^{\infty} b_{n} \text { diverges } \end{aligned}$	

Ans:
(a) Diverges because of $\lim _{n \rightarrow \infty} \frac{(-1)^{n}(2 n-1)}{3 n+4}=\frac{2}{3} \lim _{n \rightarrow \infty}(-1)^{n} \neq 0$ (by the n-th term test)
(b) $\lim _{n \rightarrow \infty} \frac{\frac{1}{\sqrt{n^{3}}}}{\frac{1}{\sqrt{n^{3}+1}+\sqrt{n^{3}}}}=2$, since $\frac{1}{\sqrt{n^{3}}}$ is a p-series with $p>1$ which means that
$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}+1}+\sqrt{n^{3}}}$ is convergent by the limit comparison test. Therefore,
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n^{3}+1}+\sqrt{n^{3}}}$ is absolute convergent.
(c) $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n+1}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+1}$. The given series converges by the alternating series test since $\frac{1}{(n+1)+1}<\frac{1}{n+1}$ and $\lim _{n \rightarrow \infty} \frac{1}{n+1}=0$, but $\quad \sum_{n=1}^{\infty}\left|\frac{\cos (n \pi)}{n+1}\right|=\sum_{n=1}^{\infty} \frac{1}{n+1}$ diverges by a limit comparison test to the divergent harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$. Therefore, the series converges conditionally.
(d) It is absolute convergent because of $\sum_{n=3}^{\infty}\left|\frac{(-1)^{n}}{n(\ln n)[\ln (\ln n)]^{2}}\right|=$ $\sum_{n=3}^{\infty} \frac{1}{n(\ln n)[\ln (\ln n)]^{2}}$. Let $f(\mathrm{x})=\frac{1}{x(\ln x)[\ln (\ln x)]^{2}}$, since $\frac{1}{(x+1)(\ln (x+1))[\ln (\ln (x+1))]^{2}}<$ $\frac{1}{(x)(\ln (x))[\ln (\ln (x))]^{2}} \cdot f(x)$ is positive, continuous and decreasing.

And $\int_{3}^{\infty} \frac{1}{x(\ln x)[\ln (\ln x)]^{2}} d x=\left.\lim _{b \rightarrow \infty} \frac{-1}{\ln (\ln x)}\right|_{3} ^{b}<\infty$ (by integral test, it is convergent) (e) $n^{\frac{1}{n}}-1=e^{\frac{\ln n}{n}}-1=\left[1+\frac{\ln n}{n}+\frac{1}{2}\left(\frac{\ln n}{n}\right)^{2}+\cdots\right]-1=\frac{\ln n}{n}+\frac{1}{2}\left(\frac{\ln n}{n}\right)^{2}+\cdots>$ $\frac{\ln n}{n}>\frac{1}{n} \quad(n \geq 3)$. By the direct comparison test, the series diverges.

POWER SERIES FOR ELEMENTARY FUNCTIONS

Function	Interval of Convergence
$\frac{1}{x}=1-(x-1)+(x-1)^{2}-(x-1)^{3}+(x-1)^{4}-\cdots+(-1)^{n}(x-1)^{n}+\cdots$	$0<x<2$
$\frac{1}{1+x}=1-x+x^{2}-x^{3}+x^{4}-x^{5}+\cdots+(-1)^{n} x^{n}+\cdots$	$-1<x<1$
$\ln x=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\cdots+\frac{(-1)^{n-1}(x-1)^{n}}{n}+\cdots$	$0<x \leq 2$
$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots+\frac{x^{n}}{n!}+\cdots$	$-\infty<x<\infty$
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\cdots$	$-\infty<x<\infty$
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\cdots+\frac{(-1)^{n} x^{2 n}}{(2 n)!}+\cdots$	$-1 \leq x \leq 1$
$\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\frac{x^{9}}{9}-\cdots+\frac{(-1)^{n} x^{2 n+1}}{2 n+1}+\cdots \cdots \infty$	
$\arcsin x=x+\frac{x^{3}}{2 \cdot 3}+\frac{1 \cdot 3 x^{5}}{2 \cdot 4 \cdot 5}+\frac{1 \cdot 3 \cdot 5 x^{7}}{2 \cdot 4 \cdot 6 \cdot 7}+\cdots+\frac{(2 n)!x^{2 n+1}}{\left(2^{n} n!\right)^{2}(2 n+1)}+\cdots$	$-1 \leq x \leq 1$
$(1+x)^{k}=1+k x+\frac{k(k-1) x^{2}}{2!}+\frac{k(k-1)(k-2) x^{3}}{3!}+\cdots+\frac{k(k-1) \cdot \cdots(k-n+1) x^{n}}{n!}+\cdots$	$-1<x<1^{*}$
${ }^{*}$ The convergence at $x= \pm 1$ depends on the value of k	

Theorem 9.19 (Taylor's Theorem)

If a function f is differentiable through order $n+1$ in an interval I containing c, then, for each x in I, there exists z between x and c such that
$f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+R_{n}(x)$ where

$$
R_{n}(x)=\frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1}
$$

Definition 9.7 (Power series)

If x is a variable, then an infinite series of the form

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}+\cdots
$$

is called a power series. More generally, an infinite series of the form
$\sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots+a_{n}(x-c)^{n}+\cdots$
is called a power series centered at c, where c is a constant.

Theorem 9.20 (Convergence of a power series)

For a power series centered at c, precisely one of the following is true.

1. The series converges only at c.
2. There exists a real number $R>0$ such that the series converges absolutely for $|x-c|<R$, and diverges for $|x-c|>R$.
3. The series converges absolutely for all x.

The number R is the radius of convergence. If the series converges only at c, the radius of convergence is $R=0$, and if the series converges for all x, the radius of convergence is $R=\infty$. The set of all values of x for which it converges is the interval of convergence of the power series.

Theorem 9.21 (Properties of functions defined by power series)
If the function given by
$f(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots$ has a radius of convergence of $R>0$, then, on the interval ($c-R, c+R$), f is differentiable (and therefore continuous). Moreover, the derivative and antiderivative of f are as follows.

1. $f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}(x-c)^{n-1}=a_{1}+2 a_{2}(x-c)+3 a_{3}(x-c)^{2}+\cdots$
2.

$\int f(x) \mathrm{d} x=C+\sum_{n=0}^{\infty} a_{n} \frac{(x-c)^{n+1}}{n+1}=C+a_{0}(x-c)+a_{1} \frac{(x-c)^{2}}{2}+a_{2} \frac{(x-c)^{3}}{3}+\cdots$
The radius of convergence of the series obtained by differentiating or integrating a power series is the same as that of the original power series. The interval of convergence, however, may differ as a result of the behavior at the endpoints.
2. (8%) Consider the function.

$$
f(\mathrm{x})=\frac{1}{2 x-1}, \mathrm{x} \neq \frac{1}{2}
$$

(a) Find the power series expansion of $p(\mathrm{x})$ of f expand at the point $\frac{1}{3}$ and determine its interval of convergence.
(b) Write $p(\mathrm{x})=\sum_{n=0}^{\infty} a_{n}\left(x-\frac{1}{3}\right)^{n}$. Is $\sum_{n=0}^{\infty} a_{n}\left(\frac{2}{3}\right)^{n}=f(1)=1$? and why?

Ans:
(a) $f(\mathrm{x})=\frac{-1}{1-2 x}=\frac{-1}{\frac{1}{3}-2\left(x-\frac{1}{3}\right)}=\frac{-3}{1-6\left(x-\frac{1}{3}\right)}$

Using the geometric series allows us to obtain

$$
p(\mathrm{x})=-3 \sum_{n=0}^{\infty}\left(6\left(x-\frac{1}{3}\right)\right)^{n}=\sum_{n=0}^{\infty}(-3) 6^{n}\left(x-\frac{1}{3}\right)^{n}
$$

which converges when $\left|6\left(x-\frac{1}{3}\right)\right|<1$ or equivalently, the interval of convergence of the power series p is $\frac{1}{6}<x<\frac{1}{2}$
(b) No, because the point 1 does not belong to the interval of convergence of p.

Definition 9.8 (Taylor and Maclaurin series)

If a function f has derivatives of all orders at $x=c$, then the series

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}=f(c)+f^{\prime}(c)(x-c)+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+\cdots
$$

is called the Taylor series for $f(x)$ at c. Moreover, if $c=0$, then the series is the Maclaurin series for f.
3. (10%)
(a) Find the Maclaurin series for $\arccos (x)$
(b) Find the radius and interval of convergence of the Maclaurin series for $\arccos (x)$. (You can ignore examine about the endpoint of the interval)
Ans:
(a) $\frac{d}{d x} \arccos (\mathrm{x})=\frac{-1}{\sqrt{1-x^{2}}}=-\sum_{n=0}^{\infty}\binom{\frac{-1}{2}}{n}\left(-x^{2}\right)^{n}$

$$
\arccos (\mathrm{x})=\sum_{n=0}^{\infty}\left(\frac{-1}{2}\right)(-1)^{n+1} \frac{x^{2 n+1}}{2 n+1}+C
$$

Substitute 0 into the equation we have $C=\frac{\pi}{2}$. Therefore,

$$
\arccos (\mathrm{x})=\frac{\pi}{2}+\sum_{n=0}^{\infty}\left(\frac{-1}{2} \begin{array}{c}
n
\end{array}\right)(-1)^{n+1} \frac{x^{2 n+1}}{2 n+1}
$$

(b) Use ratio test, $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\binom{\frac{-1}{2}}{\frac{n}{2}}(-1)^{n+2} \frac{x^{2 n+3}}{2 n+3}}{\binom{\frac{-1}{2}}{n}(-1)^{n+1} \frac{x^{2 n+1}}{2 n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\left(n+\frac{1}{2}\right)(2 n+1)}{(n+1)(2 n+3)}\right| x^{2}=$ x^{2}
When $x^{2}<1$, it is converge, therefore $\mathrm{R}=1$ and the interval of convergence is $[-1,1]$. For the boundary at 1 and -1 , see
https://proofwiki.org/wiki/Power_Series_Expansion_for_Real_Arccosine_Functio \underline{n} for more details.
4. (8\%) Use a power series to approximate $\int_{0}^{1} \sin \left(x^{2}\right) d x$ with an error of less than 0.001

Ans: $\int_{0}^{1} \sin \left(x^{2}\right) d x=\int_{0}^{1}\left(x^{2}-\frac{x^{6}}{6}+\frac{x^{10}}{120}-\cdots\right) d x=\left.\left(\frac{x^{3}}{3}-\frac{x^{7}}{42}+\frac{x^{11}}{1320}-\cdots\right)\right|_{0} ^{1}=\frac{1}{3}-$ $\frac{1}{42}+\frac{1}{1320}-\cdots$

It is an alternating series, therefore we know that $\int_{0}^{1} \sin \left(x^{2}\right) d x=\frac{1}{3}-\frac{1}{42} \approx \frac{13}{42}$ and the error is smaller than $\frac{1}{1320}$ which is also smaller than $\frac{1}{1000}$
5. (9\%) Evaluate the following expression (Try to use the Basic series of Taylor series and notice that the power series is a continuous function)
(a) $1-\frac{\pi^{2}}{4^{2} \times 2!}+\frac{\pi^{4}}{4^{4} \times 4!}-\frac{\pi^{6}}{4^{6} \times 6!}+\cdots$
(b) $\frac{1}{\sqrt{3}}-\frac{1}{3(\sqrt{3})^{3}}+\frac{1}{5(\sqrt{3})^{5}}-\frac{1}{7(\sqrt{3})^{7}}+\cdots$
(c) $\lim _{x \rightarrow 0} \frac{\tan (x)-\sin (x)}{x^{2}}$

Ans:
(a) $1-\frac{\pi^{2}}{4^{2} \times 2!}+\frac{\pi^{4}}{4^{4} \times 4!}-\frac{\pi^{6}}{4^{6} \times 6!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n)!}\left(\frac{\pi}{4}\right)^{2 n}=\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$
(b) $\frac{1}{\sqrt{3}}-\frac{1}{3(\sqrt{3})^{3}}+\frac{1}{5(\sqrt{3})^{5}}-\frac{1}{7(\sqrt{3})^{7}}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1}\left(\frac{1}{\sqrt{3}}\right)^{2 n+1}=\arctan \left(\frac{1}{\sqrt{3}}\right)=$ $\frac{\pi}{6}$
(c) $\lim _{x \rightarrow 0} \frac{\tan (x)-\sin (x)}{x^{2}}=\lim _{x \rightarrow 0} \frac{\left(x+\frac{x^{3}}{3} \cdots\right)-\left(x-\frac{x^{3}}{3!}+\cdots\right)}{x^{2}}=\lim _{x \rightarrow 0} \frac{\frac{x^{3}}{2}}{x^{2}}=0$
(9.10 Ex8)
6. (8%) Let $f(\mathrm{x})=x^{6} e^{x^{3}}$. Try to evaluate the high order derivative $f^{(60)}(0)$

Ans:

$$
\begin{gathered}
e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots \\
e^{x^{3}}=1+x^{3}+\frac{x^{6}}{2!}+\cdots+\frac{x^{3 n}}{n!}+\cdots \\
x^{6} e^{x^{3}}=x^{6}+x^{9}+\frac{x^{12}}{2!}+\cdots+\frac{x^{3 n+6}}{n!}+\cdots \\
f^{(60)}(0)=\frac{1}{18!} \times 60!
\end{gathered}
$$

Theorem 10.11 (Slope in polar form)

If f is a differentiable function of θ, then the slope of the tangent line to the graph of $r=f(\theta)$ at the point (r, θ) is

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y / \mathrm{d} \theta}{\mathrm{~d} x / \mathrm{d} \theta}=\frac{f(\theta) \cos \theta+f^{\prime}(\theta) \sin \theta}{-f(\theta) \sin \theta+f^{\prime}(\theta) \cos \theta}
$$

provided that $\mathrm{d} x / \mathrm{d} \theta \neq 0$ at (r, θ). (See Figure 14.)

Theorem 10.13 (Area in polar coordinates)

If f is continuous and nonnegative on the interval $[\alpha, \beta], 0<\beta-\alpha \leq 2 \pi$, then the area of the region bounded by the graph of $r=f(\theta)$ between the radial lines $\theta=\alpha$ and $\theta=\beta$ is given by

$$
A=\frac{1}{2} \int_{\alpha}^{\beta}[f(\theta)]^{2} \mathrm{~d} \theta=\frac{1}{2} \int_{\alpha}^{\beta} r^{2} \mathrm{~d} \theta, \quad 0<\beta-\alpha \leq 2 \pi .
$$

Theorem 10.14 (Arc length of a polar curve)

Let f be a function whose derivative is continuous on an interval $\alpha \leq \theta \leq \beta$. The length of the graph of $r=f(\theta)$ from $\theta=\alpha$ to $\theta=\beta$ is

$$
s=\int_{\alpha}^{\beta} \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} \mathrm{~d} \theta=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{\mathrm{d} r}{\mathrm{~d} \theta}\right)^{2}} \mathrm{~d} \theta
$$

Theorem 10.15 (Area of a surface of revolution)

Let f be a function whose derivative is continuous on an interval $\alpha \leq \theta \leq \beta$. The area of the surface formed by revolving the graph of $r=f(\theta)$ from $\theta=\alpha$ to $\theta=\beta$ about the indicated line as follows.
(1) $S=2 \pi \int_{\alpha}^{\beta} y \mathrm{~d} s=2 \pi \int_{\alpha}^{\beta} f(\theta) \sin \theta \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} \mathrm{~d} \theta$

About the polar axis
(2) $S=2 \pi \int_{\alpha}^{\beta} x \mathrm{~d} s=2 \pi \int_{\alpha}^{\beta} f(\theta) \cos \theta \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} \mathrm{~d} \theta$

About the line $\theta=\frac{\pi}{2}$
7. (8%) Find the area of the region which is inside the circle $r=6 \cos \theta$ and outside the cardioid $r=2(1+\cos \theta)$. (Both are represented in polar coordinates)

Ans:

Since $(r,-\theta)$ also lies on both graph, both of them are symmetric with respect to polar axis.

The intersection is $2(1+\cos \theta)=6 \cos \theta \rightarrow \cos \theta=\frac{1}{2^{\prime}}$, therefore, $\theta=\frac{\pi}{3}, \frac{5 \pi}{3}$.
The area can be calculated as $\mathrm{A}=2 \times \frac{1}{2}\left[\int_{0}^{\frac{\pi}{3}}(6 \cos \theta)^{2} d \theta-\int_{0}^{\frac{\pi}{3}} 4(1+\cos \theta)^{2} d \theta\right]=$
$36 \int_{0}^{\frac{\pi}{3}} \cos ^{2} \theta d \theta-4 \int_{0}^{\frac{\pi}{3}}(1+\cos \theta)^{2} d \theta=36 \int_{0}^{\frac{\pi}{3}} \frac{1+\cos (2 \theta)}{2} d \theta-4 \int_{0}^{\frac{\pi}{3}}(1+\cos \theta)^{2} d \theta=$ $\int_{0}^{\frac{\pi}{3}}(18 \cos 2 \theta+18-4-8 \cos \theta-2 \cos 2 \theta-2) d \theta=(9 \sin 2 \theta+18 \theta-4 \theta-$
$8 \sin \theta-\sin 2 \theta-2 \theta)\left.\right|_{0} ^{\frac{\pi}{3}}=4 \pi$

8. (5\%) Find the arc length of $r=e^{\theta}$ from $\theta=0$ to $\theta=2 \pi$

Ans: $\mathrm{S}=\int_{0}^{2 \pi} \sqrt{\left(e^{\theta}\right)^{2}+\left(e^{\theta}\right)^{2}} d \theta=\sqrt{2} \int_{0}^{2 \pi} e^{\theta} d \theta=\sqrt{2}\left(e^{2 \pi}-1\right)$
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

	Elliptic Cone$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$Trace $\quad \frac{\text { Plane }}{\text { Ellipse }}$Parallel to $x y$-plane Hyperbola Parallel to x-plane Hyperbola Parallel to $y z$-plane The axis of the cone corresponds to the variable whose coefficient is negative. The traces in the coordi- nate planes parallel to this axis are intersecting lines.	
	Elliptic Paraboloid$z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$Trace Ellipse Plane Parabola Parallel to $x z$-plane Parallel to $x z$-plane Parabola Parallel to $y z$-plane The axis of the paraboloid corresponds to the variable raised to the first power.	
	Hyperbolic Paraboloid$z=\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}$Trace Hyperbolane Parabola Parallel to $x z$-plane Parallel to $x \approx$ plane Parabola Parallel to $y z$-plane The axis of the paraboloid corresponds to the variable raised to the first power.	

Definition 11.2 (Equation of cylinders)

The equation of a cylinder whose ruling are parallel to one of the coordinate axes contain only the variables corresponding to the other two axes.

Definition 11.4 (Surface of revolution)

If the graph of a radius function r is revolved about one of the coordinate axes, the equation of the resulting surface of revolution has one of the following forms.
(1) Revolved about the x-axis: $y^{2}+z^{2}=[r(x)]^{2}$
(2) Revolved about the y-axis: $x^{2}+z^{2}=[r(y)]^{2}$
(3) Revolved about the z-axis: $x^{2}+y^{2}=[r(z)]^{2}$

Spherical coordinates
9. (12%) Classify the following surface, if it is quadratic surface you should further classify it into six basic types of surface
(a) $\mathrm{z}=x^{2}+3 y^{2}$
(b) $x^{2}+y^{2}-2 z=0$
(c) $r^{2}=z^{2}+2$ (this representation is in cylindrical coordinates)
(d) $\rho=4 \sec (\Phi)$ (this representation is in spherical coordinates)

Ans:

(a) $\mathrm{z}=x^{2}+3 y^{2}=x^{2}+\frac{y^{2}}{\left(\frac{1}{\sqrt{3}}\right)^{2}} \quad$ which is an elliptic paraboloid
(b) $x^{2}+y^{2}-2 z=0 \rightarrow x^{2}+y^{2}=2 z$ which is a surface of revolution or elliptic paraboloid
(c) $r^{2}=z^{2}+2 \rightarrow x^{2}+y^{2}-z^{2}=2 \rightarrow \frac{x^{2}}{(\sqrt{2})^{2}}+\frac{y^{2}}{(\sqrt{2})^{2}}-\frac{z^{2}}{(\sqrt{2})^{2}}=1$ which is a
hyperboloid of one sheet
(d) $\rho=4 \sec (\Phi) \rightarrow z=\rho \cos (\Phi)=4$ which is a plane

Definition 12.2 (The limit of a vector-valued function)

1. If \mathbf{r} is a vector-valued function such that $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$, then

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\left[\lim _{t \rightarrow a} f(t)\right] \mathbf{i}+\left[\lim _{t \rightarrow a} g(t)\right] \mathbf{j} \quad \text { Plane }
$$

provided f and g have limits as $t \rightarrow a$.
2. If \mathbf{r} is a vector-valued function such that
$\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, then

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\left[\lim _{t \rightarrow a} f(t)\right] \mathbf{i}+\left[\lim _{t \rightarrow a} g(t)\right] \mathbf{j}+\left[\lim _{t \rightarrow a} h(t)\right] \mathbf{k} \quad \text { Space }
$$

provided f, g, and h have limits as $t \rightarrow a$.
(1) If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$, where f and g are differentiable functions of t, then

$$
\mathbf{r}^{\prime}(t)=f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j} . \quad \text { Plane }
$$

(2) If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, where f, g, and h are differentiable functions of t, then

$$
\mathbf{r}^{\prime}(t)=f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}+h^{\prime}(t) \mathbf{k} . \quad \text { Space }
$$

Theorem 12.2 (Properties of the derivative)

Let \mathbf{r} and \mathbf{u} be differentiable vector-valued functions of t, let w be a differentiable real-valued function of t, and let c be scalar.
(1) $D_{t}[\mathbf{r}(t)]=c \mathbf{r}^{\prime}(t)$
(2) $D_{t}[\mathbf{r}(t) \pm \mathbf{u}(t)]=\mathbf{r}^{\prime}(t) \pm \mathbf{u}^{\prime}(t)$
(3) $D_{t}[w(t) \mathbf{r}(t)]=w(t) \mathbf{r}^{\prime}(t)+w^{\prime}(t) \mathbf{r}(t)$
(9) $D_{t}[\mathbf{r}(t) \cdot \mathbf{u}(t)]=\mathbf{r}(t) \cdot \mathbf{u}^{\prime}(t)+\mathbf{r}^{\prime}(t) \cdot \mathbf{u}(t)$
(6) $D_{t}[\mathbf{r}(t) \times \mathbf{u}(t)]=\mathbf{r}(t) \times \mathbf{u}^{\prime}(t)+\mathbf{r}^{\prime}(t) \times \mathbf{u}(t)$
(6) $D_{t}[\mathbf{r}(w(t))]=\mathbf{r}^{\prime}(w(t)) w^{\prime}(t)$
(1) If $\mathbf{r}(t) \cdot \mathbf{r}(t)=c$, then $\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=0$.

Definition 12.5 (Integration of vector-valued functions)

- If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$, where f and g are continuous on $[a, b]$, then the indefinite integral(antiderivative) of \mathbf{r} is

$$
\int \mathbf{r}(t) \mathrm{d} t=\left[\int f(t) \mathrm{d} t\right] \mathbf{i}+\left[\int g(t) \mathrm{d} t\right] \mathbf{j} \quad \text { Plane }
$$

and its definite integral over the interval $a \leq t \leq b$ is

$$
\int_{a}^{b} \mathbf{r}(t) \mathrm{d} t=\left[\int_{a}^{b} f(t) \mathrm{d} t\right] \mathbf{i}+\left[\int_{a}^{b} g(t) \mathrm{d} t\right] \mathbf{j}
$$

Definition 12.5 (continue)

- If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, where f, g, and h are continuous on $[a, b]$, then the indefinite integral (antiderivative) of \mathbf{r} is
$\int \mathbf{r}(t) \mathrm{d} t=\left[\int f(t) \mathrm{d} t\right] \mathbf{i}+\left[\int g(t) \mathrm{d} t\right] \mathbf{j}+\left[\int h(t) \mathrm{d} t\right] \mathbf{k} \quad$ Space
and its definite integral over the interval $a \leq t \leq b$ is

$$
\int_{a}^{b} \mathbf{r}(t) \mathrm{d} t=\left[\int_{a}^{b} f(t) \mathrm{d} t\right] \mathbf{i}+\left[\int_{a}^{b} g(t) \mathrm{d} t\right] \mathbf{j}+\left[\int_{a}^{b} h(t) \mathrm{d} t\right] \mathbf{k} .
$$

10. (12\%) Evaluate the following expression
(a) $\lim _{t \rightarrow 1} \sqrt{t} \boldsymbol{i}+\frac{\ln t}{t^{2}-1} \boldsymbol{j}+\frac{1}{t-1} \boldsymbol{k}$
(b) $\lim _{t \rightarrow 0} \frac{\sin 2 t}{t} \boldsymbol{i}+e^{-t} \boldsymbol{j}+5 \boldsymbol{k}$
(c) Let $\boldsymbol{r}(\mathrm{t})=3 \mathrm{t} \boldsymbol{i}+(\mathrm{t}-1) \boldsymbol{j}, \boldsymbol{u}(\mathrm{t})=\mathrm{t} \boldsymbol{i}+t^{2} \boldsymbol{j}+\frac{2}{3} t^{3} \boldsymbol{k}$, find $\frac{d}{d t}[\boldsymbol{r}(t) \cdot \boldsymbol{u}(t)]$
(d) $\int\left(3 \sqrt{t} \boldsymbol{i}+\frac{2}{t} \boldsymbol{j}+6 \boldsymbol{k}\right) d t$

Ans:

(a) Does not exit, since $\lim _{t \rightarrow 1} \frac{1}{t-1}$ does not exist
(b) $\lim _{t \rightarrow 0} \frac{\sin 2 t}{t} \boldsymbol{i}+e^{-t} \boldsymbol{j}+5 \boldsymbol{k}=2 \boldsymbol{i}+\boldsymbol{j}+5 \boldsymbol{k}$

$$
\text { Since } \lim _{t \rightarrow 0} \frac{\sin 2 t}{t}=\lim _{t \rightarrow 0} \frac{\sin 2 t}{2 t} 2=2
$$

(c) $\boldsymbol{u}^{\prime}(t)=\boldsymbol{i}+2 \mathrm{t} \boldsymbol{j}+2 \mathrm{t}^{2} \boldsymbol{k}, \boldsymbol{r}^{\prime}(t)=3 \boldsymbol{i}+\boldsymbol{j}$

$$
\begin{aligned}
\frac{d}{d t}[\boldsymbol{r}(t) \cdot \boldsymbol{u}(t)] & =\boldsymbol{r}(t) \cdot \boldsymbol{u}^{\prime}(t)+\boldsymbol{u}(t) \cdot \boldsymbol{r}^{\prime}(t) \\
& =[(3 t)+(t-1)(2 t)]+\left[(3 t)+\left(t^{2}\right)\right]=4 t+3 t^{2}
\end{aligned}
$$

(d) $\int\left(3 \sqrt{t} \boldsymbol{i}+\frac{2}{t} \boldsymbol{j}+\boldsymbol{k}\right) d t=2 t^{\frac{3}{2}} \boldsymbol{i}+2 \ln t \boldsymbol{j}+6 t \boldsymbol{k}+\boldsymbol{C}$

